
International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 4 Number 10 (2015) pp. 605-622 http://www.ijcmas.com

Review Article

Aureobasidium pullulans - An Industrially Important Pullulan Producing Black Yeast

Ranjan Singh¹*, Rajeeva Gaur², Shikha Bansal¹, Pritha Biswas¹, Prabhash K. Pandey³, Farrukh Jamal³, Soni Tiwari² and Manogya K. Gaur⁴

¹Department of Botany and Microbiology, St. Aloysius College (Autonomous), Jabalpur, M.P., India

²Department of Microbiology (DST-FIST Supported, Center of Excellence), Dr. R. M. L. Avadh University, Faizabad, U.P., India

³Department of Biochemistry, Dr. R. M. L. Avadh University, Faizabad, U.P., India ⁴D.G.M. Environment (ETP and Biocompost), Balrampur Distillery, Bhabhanan, Basti, U.P., India

*Corresponding author

ABSTRACT

Keywords

Aureobasidium pullulans, Pullulan, Single Cell Protein, Agro-Industrial Waste, Production Aureobasidium pullulans, popularly known as black yeast, is one of the most widespread saprophyte fungus associated with wide range of terrestrial and aquatic habitats, in temperate and tropical environment. It is a polymorphic fungus that is able to grow in single yeast-like cells or as septate polykaryotic hyphae showing synchronous conditions, with budding cells. This fungus has been exploited potentially for commercial production of various enzymes (amylase, xylanase, pectinase, etc), single cell protein, alkaloids and polysaccharide, especially pullulan. Pullulan has been considered as one of the important polysaccharide for production of biodegradable plastics. The fungus has excellent genetic make-up to produce various important metabolites at commercial production with limited species. Some of the A. pullulans have potential antagonistic activity against a number of phytopathogenic fungi used as bio-control agents of post-harvest diseases. It has been found to be tolerant to many metal ions which are common pollutants of soil and water. Several strains of this fungus have ability to degrade xenobiotic compounds. In the light of the above facts, this review article has emphasized on the orientation, morphology, biochemical characteristics, habitats and economic potentials of this industrially important yeast.

Introduction

Aureobasidium pullulans (De Bary) G. Arnoud is a ubiquitous, polymorphic and oligotrophe black yeast like microfungus that occurs frequently in wide range of tropical and temperate environment with fluctuating moisture content in phyllospere, and also isolated from damp indoor surfaces, food and feed substances (65). . It is well known as a naturally occurring epiphyte or endophyte of a wide range of plant species (e.g. apple, grape, cucumber, green beans, and cabbage) without causing any symptom of disease (1). Chronic human exposure to *A. pullulans* via humidifiers or air conditioners can lead to hypersensitivity pneumonitis or "humidifier lung". This condition is characterized acutely by dyspnea, cough, chest infilterates and acute inflammatory reaction. The strains causing infections in humans were reclassified to *A.melanogenum* (23)

It has also been found in the osmotically stressed environments like hyper saline water in salterns (24) and the rocks (81). fungus disperses easily due to This production of yeast-like propagules in large quantity and found globally but rarely reported in the intense cold environment, as investigations on fungal diversity are limited to frozen Antarctic soils and Siberian permafrost where basidiomycetous yeasts were found (3). Several Aureobasidium like black yeasts were isolated from glacial and sub-glacial ice in the coastal Arctic habitats and the adjacent sea water (91). From the available records, it is apparent that this fungus is most common in temperate zone with numerous records both from the British Isles and the United States including Alaska, Germany, Antarctica. Denmark, Netherlands. Poland. Austria. Czech Republic, Russia and Japan. There are several reports of its occurrence in Mediterranean and arid zones including Italy, France, Egypt, Iraq, Pakistan and South Africa. It has also been extensively isolated from tropical and subtropical region namely, Brazil, India, China, Thailand, Malaysia, Jamaica (West Indies), etc. An extensive list of the habitats and geography from which strains of A. pullulans have been isolated is well documented. (39, 91). The fungus has been frequently isolated from moorland, peat bogs or peat podzol and forest soils. Other noteworthy habitats

include fresh water, estuarine and marine sediments and sea water. Occurrence and distribution of A. pullulans by fluorescence dye and found it frequently on the phylloplane of several plants was studied (47). A. pullulans was isolated from green and senescent sugar maples, but it did not seem to be inducer and biodeteriorator (36). Seasonal occurrence of A. pullulans from March to April in river Danube (77). This fungus has been isolated from several locations of Thailand (56, 57, 58). Pullulan producing novel color variant strain of A. pullulans was isolated from the phylloplane of Ficus sp in India (72). Similarly, A. pullulans was isolated strain N13D from deep sea sediments of the Pacific Ocean (28). A. pullulans was isolated from needles and twigs of pine plantation from northern Spain (92). The morphological forms of this fungus are governed by many factors like temperature, pH, and oxygen concentration. Nutritional factors mainly the source and concentration of carbon, nitrogen and mineral affect the morphology mainly yeast like cells which are responsible for the production of pullulan, an important polysaccharide. Morphological studies have been well reviewed (17). This review has concluded that A. *pullulans*, is an omnipresent fungus which can survive in different type of habitat. Some of the recent studies on the behavior of this fungus clearly show two important characteristics of antifungal and antibacterial activity along with pullulan production. This approach makes such strain more economical for industrial use. Earlier, A. pullulans was identified as Dematium pullulans De Bary (1884) and Pullularia pullulans (De Bary) Berkhout (1866). Using the criteria of conidiogenesis that is, synchronous holoblastic conidial production. A.pullulans was placed previously under Fungi Imperfecti, Order and Family Dematiaceae. Moniliales, However, further reports included it under

Ascomycota though; perfect stage has not yet been reported (14). In recent classification, A. pullulans is regarded as Ascomycetous yeast and is placed in the Order Dothideales, Family Dothideaceae The fungus was taxonomically (90). characterized on the basis of its morphological and nutritional characteristics comprising single species with three different varieties such as A. pullulans var. pullulans, A. pullulans var. melanogenum and A. pullulans var. aubasidani Yurlova (15). Four strains of arctic Aureobasidium have been discovered, that is, A. pullulans pullulans var. pullulans, Α. var. melanogenum, A. pullulans var. subglaciale and A. pullulans var. namibiae (91).

Α. pullulans exhibits polymorphism, for it can grow as budding yeast or as mycelia depending upon environmental conditions. The life cycle of A. pullulans was thoroughly reviewed (15). The formation of chlamydospores dark-coloured is the characteristic feature of this fungus (59). Some workers have described the vegetative cycle of A. pullulans as well as colony characteristics on solid nutrient medium. Colonies are initially smooth and eventually become covered with slime. Starting as yellow cream, light pink or light brown, the colonies finally become blackish due to production of a specific melanin at chlamydospore production stage. When observed under light microscope, the hyphae look hyaline, smooth and thin-walled, 2 - 16 um wide with cells often wider than long forming rough and compact mycelia. A. pullulans can be recognized by straight conidia and by the presence of lobed chains of thick-walled chlamydospores. A review regarding the application of A. pullulans had been published emphasing the production of various enzymes, single cell proteins and polysaccharide by this fungus (17). The use of this fungus in environmental pollution

control and biodeterioration of xenobiotic compounds has also been added in this review. Although the author has covered almost all the potential areas in brief, but pullulan is little covered. However, after a long gap, Leathers wrote a review entitled "Pullulan" in 2002, emphasing on historical chemical structures various outline. analytical and assay methods of pullulan including biosynthesis of pullulan in different nutrient sources. The genetics of A. pullulans has been extensively covered in this review. Since then several recent reports have come regarding novel method of immobilization, use of cheaper carbon sources and use of continuous fermentation for better yield and productivity. A novel fungus Eurotium chevalieri has also been reported to produce pullulan which was at par to A. pullulans, commenced the possibility of the isolation of newer strains from natural ecosystem (20). Moreover, a review on pullulan emphasing on various factors namely; pH, various substrates, molecular weight distribution of native molecular pullulan along with and hydrodynamic property of pullulan and also mentioned, a novel area that is biomedical application of pullulan (70). A review entitled "Bioproducts from A. pullulans, a biotechnologically important yeast" has written elaborating been some new metabolites like Siderophores production by A. pullulans and biocontrol efficiency against post-harvest diseases. However, they shown beneficial have also similar metabolites like various enzymes namely; protease, amylase, lipase, cellulase, xylanase and single cell protein (SCP) producing capabilities of A. pullulans (11).

In-spite of all the information up to 2009, the commercial production of pullulan with a proper fermentation technique regarding the better continuous production in solid state and submerged fermentation have not yet been taken up properly because commercial production technology with specific design of fermentor technology is still lacking behind and must be developed for better pullulan production. Moreover, immobilization in solid state as well as submerged fermentation using suitable solid matrix must be discussed. However, in present review an approach has been incorporated in the light of these aspects.

Economic importance of A. pullulans

A. pullulans has been employed for different useful purposes as it produces a variety of important metabolites, enzymes, antibiotics, single cell protein (SCP) and polysaccharides (11). Tests have shown it to be safe for the use as SCP (12). A. pullulans has shown the potential in controlling and monitoring environmental pollution. Due to ubiquitous nature of this fungus on phylloplane, any change in its occurrence might prove to be an indicator of environmental perturbations generated by chemicals or other biological organisms genetically engineered (including organisms) landing on the leaf surfaces. A. *pullulans* appears to be a promising organism for the development of newer antimicrobial agents, both for chemotherapy well as non-medical applications. as Extracellular antimicrobial activity of Aureobasidium pullulans was demonstrated against several Gram positive and Gram negative bacteria (13). A large number of bioactive and structurally diverse fungal metabolites have been used for the development of valuable pharmaceuticals (76). Some isolates of A. pullulans showed antagonistic activity against a number of phytopathogenic fungi and were considered as possible biocontrol agents of post harvest diseases (50). The strain L47 of A. pullulans was isolated in South Italy from corpospere of table grape berries and was successfully

applied to control post harvest diseases of different fruits and vegetables (67). This strain provided high protection levels against *P. digitatum* on grape fruit, *Botrytis cinerea*, *Aspergillus niger* and *Rhizopus stolonifer* on grape, *B. cinerea* and *Monilia lax a* on sweet cherry and *B. cinerea* on kiwi fruit, cherry, tomato, apples and strawberries (66).

Enzymes from *A. pullulans*

Different strains of A. pullulans isolated from different environments can produce amylase. protease, lipase, cellulose, xylanase, etc, which have great potential applications in industry. Proteases have been shown to have many applications in detergents, leather processing, silver recovery, medical purposes, food processing, feeds, chemical industry as well as waste treatment. Proteases also contribute the development of high-added to applications or products using the enzymeaided digestion of protein from different sources (35). However, little has been known about protease from marine-derived Amylases veasts (10).have many applications in bread and baking industry, starch liquefaction and saccharification, textile desiging, paper industry, detergent industry, analysis in medical and clinical chemistry, and food and pharmaceutical industries. Because most yeasts from environments are safe (GRAS, generally regarded as safe) compared to bacteria, interest in amylolytic yeasts has been increased in recent years as their potential value for conversion of starchy biomass to single cell protein and ethanol has been recognized (25). Recently, some amylases from terrestrial yeasts also have been found to have the ability to digest raw starch. However, very few studies exist on the amylase-producing marine yeasts (45). Although amylase activity produced by

bacteria is much higher than that produced by *A. pullulans*, the bacteria only can produce α -amylase (51).

Lipases catalyze a wide range of reactions, including hydrolysis, inter-esterification, alcoholysis, acidolysis, esterification and aminolysis. Therefore, lipases, especially microbial lipases, have many industrial applications (29). Although lipases from Candida rugosa and Candida antartica have been extensively used in different fields, very few studies exist on the lipase produced by yeasts isolated from marine environments (9). Lipases from A. pullulans are extracellular. It was also found that the crude lipase produced by A. pullulans HN2.3 has high hydrolytic activity towards olive oil, peanut oil, soybean oil and lard (48). Cellulose is the most abundant organic material on the earth consisting of glucose units linked together by α -1, 4-glycosidic bonds. It has been observed that most of the cultures of A. pullulans have usually failed to show any cellulolytic activity (6). However, some isolates of A. pullulans of the tropical origin produced CMCase (endoglucanase) alphacellulase and (exoglucanase) activity (34). The ability to produce cellulose by different strains of A. pullulans isolated from different marine environments (93). Unfortunately, it is still unknown completely about cellobiohydrolases in A. pullulans, and the gene encoding α -glucosidase in A. pullulans has not been cloned. Xylanases have many applications in paper, fermentation and food industries, as well as in waste treatment. The fungus A. pullulans Y-2311-1 was shown to be among the most proficient of the xylandegrading fungi, secreting extremely high levels of xylanolytic enzymes into culture media.

Fructo-oligosaccharides (FOS) are a class of prebiotics widely used as a functional food

material. A transfructosylating reaction by α-fructofuranosidases (FFases; EC 3.2.1.26) from A. pullulans has typically been used to produce FOS. A. pullulans DSM 2404 was found to form at least five kinds of FFases in a sucrose medium. The fructosyltransferase (FTase) produced by A. pullulans CCY-27-1-94 is stable in a broad range of pH and temperature up to 65°C, with an optimum pH 4.4 and temperature of 65°C (53). In addition, it has been found that β fructofuranosidase and maltosyltransferase from A. pullulans have many advantages over those from the bacterial strains and Aspergillus sp. due to no repression of its expression by glucose and high transfructosylating activity (89).

Mannan and heteromannans are widely distributed in nature as part of the hemicellulose fraction in plant cell walls. Mannan consists of β -1, 4-linked dmannopyranose residues. Mannanases are useful in many fields including biobleaching of pulp in paper industry, bioconversion of biomass wastes to fermentable sugars, upgrading of animal feed stuff, and reducing the viscosity of coffee extracts. They also have potential applications in the production of mannooligosaccharides, which are utilized selectively by intestinal Bifibacterium species and used as valuable food sweetener or additive (46). In screening for producers of extracellular β -1, 4- mannanase among veasts and veast-like microorganisms, the best producers were found among strains of A. pullulans (33). However, the gene encoding mannanase in A. pullulans have not been cloned yet.

A. *pullulans* as single cell protein (SCP)

A variety of microalgae such as *Spirulina* and *Chlorella* and brown algae are extensively used as feed for cultured marine

animals (9; 60). However, they have some limitations for animal consumption. Some yeasts such as Saccharomyces cerevisiae, Candida utilis and Candida tropicalis also have been used for their single-cell protein (60). They have many advantages over algae and bacteria (60; 19). Unfortunately, little is known about the marine yeasts that have high protein content and can be used as aqua feed. A total of 327 yeast strains from seawater, sediments, mud of salterns, guts of the marine fish, and marine algae were obtained. The crude protein of the yeast was estimated and it was found that eight strains of the marine yeasts grown in the medium with 20 g/l glucose contain more than 30.4 g protein per 100 g of cell dry weight (11). They belong to Metschnikowa reukaui (2E00001). Cryptococcus aureus (2E00002), A. pullulans (2E00060), Y. lipolytica (2E00004), and Hanseniaspora uvarum (2E00007), respectively. With the exception of A. pullulans 4#2 (2E00003) with nucleic acid of 7.7% (w/w), all other yeast strains contain less than 5% (w/w) of nucleic acid. Analysis of fatty acids shows that all the yeast strains tested have a large amount of C18:0 and C18:1 fatty acids, while analysis of amino acids indicates that the yeast strains tested have a large amount of essential amino acids, especially lysine and leucine which are very important nutritive components for marine animals (11). Therefore, A. pullulans that contains high content of protein may be especially important in single cell protein production by transforming the waste products such as starch, protein, cellulose and xylan into cell protein in A. pullulans.

Siderophores from A. pullulans

Siderophores are low-molecular-weight, iron-chelating ligands produced by nearly all the microorganisms. Siderophores can affect microorganisms in the environments in

several ways as result of their role as ironscavenging compounds, especially marine microorganisms because iron is an essential nutrient for virtually all forms of life and is difficult to obtain due to its low solubility in marine environments. It has been confirmed that yeasts produce only hydroxamate-type compound, while bacteria produce hydroxamate as well as catecholate siderophores (61). Siderophores are also found to have many applications in medical and environmental sciences. They can be used to control growth of the pathogenic bacteria in marine fish and the complexing ability of siderophores can be used to develop the processes for metal recovery or remediation of waste sites, including radioactive waste as they are extremely effective at solubilizing actinides and other metals from polluted environments (44). Most bacterial infections in marine animals are found to be caused by Vibrio parahaemolyticus, Vibrio anguillarum and Vibrio harveyi. Therefore, it is very important to find some antibacterial agents against these pathogens. Although many antibacterial peptides and killer toxins have been found to be active against some pathogens in marine animals, they are not stable in marine environments and easily attacked by proteases produced by marine micro-organisms (43; 83). Over 300 yeast strains isolated from different marine environments were screened for their ability to produce siderophore. Among them, one veast strain HN6.2 (2E00149) which was identified to be A. pullulans was found to produce high level of siderophore. Under the optimal conditions, this yeast strain could produce 1.1 mg/ml of the siderophore. L-Ornithine was found to enhance the siderophore production, while Fe³⁺ could greatly inhibit the siderophore production. The crude siderophore produced by the yeast strain HN6.2 is able to inhibit cell growth of V. anguillarum and V. parahaemolyticus, the

common pathogenic bacteria isolated from diseased marine animals. This is the first time to report that the crude siderophore produced by the marine-derived yeast can inhibit growth of the pathogenic bacteria isolated from marine animals (84). The first step in siderophore biosynthesis is the N5hydroxylation of ornithine catalyzed by orinithine N5- oxygenase. The further reactions of siderophore biosynthesis are peptide non-ribosomal catalyzed by synthetases (27). The presence of Fe^{3+} in the medium can greatly repress the expression of the gene encoding ornithine N5oxygenase (11), while the presence of Lornithine can enhance the exression of the gene encoding ornithine N5-oxygenase in A. pullulans HN6.2.(84).

Biocontrol from *A***.** *pullulans*

Currently, fungicide treatments represent the primary method for the control of postharvest diseases of fruits and vegetables. However, public concern about fungicide residue and development of fungicide resistant isolates of post-harvest pathogens have promoted the search for alternative means. less harmful to human health and to the environment. In recent years, considerable success has been achieved utilizing microbial antagonists to control post-harvest diseases. Because the infection of fruits by post-harvest pathogens often occurs in the field prior to harvest, it may be advantageous to apply antagonists before harvest. For this approach to be successful, putative biocontrol strains must be able to tolerate low nutrient availability, UV-B radiation, low temperatures, and climatic changes. The yeast-like fungus A. pullulans is one of the most widespread and welladapted saprophytes, both in the phyllosphere and in the carposphere. A. pullulans has a high tolerance to dessication and irradiation and has been considered as an effective biocontrol agent against postharvest diseases (Mounir *et al.*, 2007). It was found that two of *A. pullulans* (SL250 and SL236), plus a proven antagonist (isolate L47), are able to control *Penicillium digitatum* on grapefruit, *Botrytis cinerea*, *Rhizopus stolonifer*, and *A. niger* on table grape and *B. cinerea* and *R. stolonifer* on cherry tomato.

The yeast-like fungus A. pullulans strain Ach1-1 was applied to control mold growth on apple caused by Penicillium expansum (5). The competition for apple nutrients, most particularly amino acids, may be a main mechanism of the biocontrol activity of A. pullulans strain Ach1-1 against blue mold caused by P. expansum on harvested apple fruit. Micromycetes capable of developing on lubricants was identified of various origin and nature, used in various industrial applications to investigate the reaction of micromycetes on different oil products and to discuss the possibilities to use the obtained species of micromycetes for environment protection from intensive pollution with lubricants and their wastes. Different micromycetes reacted differently the impact of various lubricant to components. They found that A. pullulans responded somewhat poorly as compared to other fungus (49).

Pullulan from A. pullulans

Pullulan, which is a linear α -D-glucan made mainly of maltotriose repeating units interconnected by α (1, 6) linkages, is a water-soluble homopolysaccharide produced extracellularly polymorphic bv the micromycete A. pullulans (Sutherland, 1998). The regular alternation of α -1, 4 and α -1, 6 bonds results in two distinctive properties of structural flexibility and enhanced solubility (38). This polysaccharide is of economic importance

with increased application in food. pharmaceutical, agricultural and chemical industries (17; 78; 70; 73; 21; 75). Pullulan produces a high viscosity solution at a relatively low concentration and can be used for oxygen impermeable films and fibers, thickening or extending agents, or adhesive or encapsulating agents (73). Despite being a α -D-glucan, pullulan is resistant to α -Damylolysis and may be used in low-calorie food formulation. The chemical formula of pullulan is $(C_6H_{10}O_5)$. H₂O. Many authors (2; 69) have reported that sulfated pullulan and phosphorylated pullulan have an anticoagulant, antithrombotic and antiviral activities, and chlorinated, sulphinylethylated, etherified, carboxylated, acetylated and esterified pullulan can be used as important materials for chemical industries. So it becomes very important to search for better pullulan-producing yeast strains. It is now widely accepted that pullulan is a linear polysaccharide with maltotriosyl repeating units joined by α -(1, 6)-linkages. Alternatively, the structural formula of pullulan may be presented as a regular sequence of panoses bonded by α -(1, 4)-linkages. Minor structural abnormalities are reported in pullulan. А careful hydrolysis of pullulan by exo-and endoenzymes showed chain fragments resistant to the action of enzymes. Such resistance was attributed to the presence of maltotetraose residues distributed randomly along the pullulan chain. However, these structural abnormalities should not affect the overall physico-chemical properties of pullulan (8).

The producer of pullulan, *A. pullulans*, is a black yeast widely spread in all ecological niches including forest soils, fresh and sea water, plant and animal tissues, etc. Generally, the culture of *A. pullulans* is classified as non pathogenic; however, some strains may cause health problems. Pullulan

has been commercially produced since 1976 by the Hayashibara Company Ltd (Okayama, Japan), which remains the principal supplier. Recent arrangements with Pfizer for production of oral care strips may result in expanded markets for pullulan (21).

Despite of large number of uses, some of the associated with fermentative problems production of pullulan are (i) the formation of melanin pigment (ii) the inhibitory effects caused by high sugar concentrations in the medium and (iii) cost associated with pullulan precipitation and recovery. (52). Due to these problems, the application was actually limited due to the unavailability of better strains of A. pullulans, as well as, the maintenance of yeast-like cells during fermentation due to polymorphic nature of the organism. The quest for optimization of microbial metabolite is an essential requirement for the production of microbial metabolites such polysaccharide, as. enzyme, antibiotic etc. The major attention in the fermentation studies of A. pullulans was devoted to develop optimal cultivation maintaing conditions while high a productivity of the cells. main The objectives were high yield. short fermentation time, low cost, and high purity of the final product to meet-out the stringent requirements for food, cosmetics and pharmaceutical applications (55).

Biosynthesis of pullulan

Exopolysaccharide from A. pullulans

Even in the first work on pullulan biosynthesis, researchers observed that the culture produced two different exopolysaccharides. One of these polymers corresponds to pullulan, and the second is frequently described as a water-insoluble jelly-like material. An electron microscopy study revealed that both pullulan and the insoluble polysaccharide are localized on an outer surface of the chlamydospores, the cells that were considered as the main polysaccharide producer on non growth media. The highly dense peripheral layer was ascribed to the chain of pullulan arranged in a network covering the inner layer of α -(1, 3)-glucan composed of glucose and mannose (71). Very little is known up to now explaining how the mechanism of biosynthesis of these jellylike glucans is associated with the pullulan elaboration, though there were indications elaboration that the of insoluble exopolysaccharide is dependent on genetic type of A. pullulans. In particular, it is not clear yet whether environmental conditions, for example, pH or morphological changes of the cells are responsible for its extracellular elaboration (30).

Influence of pH and cell morphology

Relatively low initial pH (pH 2.5) suppresses synthesis of pullulan but stimulates elaboration of the insoluble glucan. An optimal value of pH for the pullulan production lies in the range between 5.5 and 7.5 (42). There were only a few reports where highest pullulan content cultivating was achieved by the microorganism in acidic pH. It is of interest to note that the optimal pH established for the biomass growth is 4.5 or lower. This difference in optimal values of pH for the pullulan synthesis and cell mass growth indirectly correlates with the independent character of these two processes (32). However, the relationship between morphology and polysaccharidethe producing capacity of the culture cannot be ignored since the polysaccharide elaboration is known to be associated with the specific cell morphology (71), though the exact cellular type responsible for pullulan synthesis is still a matter of debate. In an

overwhelming number of studies, pullulan elaboration was found to occur only with the yeast-like morphology of A. pullulans (7), whilst in other several papers the ability to synthesize the polysaccharide was the characteristic of the chlamydospore population (71). At least there is convincing agreement among researchers that pH provokes morphological changes of cells, which in turn may additionally differentiate biosynthesis routes. The yeast-like cells at neutral pH produce pullulan of a very high molecular weight (42), whilst combined cultivation of the mycelial and the yeast-like cellular forms can be beneficial for high pullulan concentration (63).

Mechanism of pullulan biosynthesis

Although many investigations on biochemical mechanisms of exopolysaccharide biosynthesis in bacteria have been carried out (16), relatively little is understood about the mechanisms of pullulan biosynthesis in A. pullulans. If the pullulan biosynthesis and regulation in A. *pullulans* are elucidated, it will be very easy to enhance pullulan yield using molecular methods. Pullulan can be synthesized from sucrose by cell-free enzymes of A. pullulans when both adenosine triphosphate (ATP) and uridine diphosphate (UDP)-glucose are added to a reaction mixture (70). The size of UDP-glucose pool and glucosyltransferase activity in the cell of A. pullulans Y68 obtained in their laboratory may be correlated with high pullulan production (11). Therefore, effects of different sugars on pullulan production, UDP-glucose activities (UDPG) pool, and of αphosphoglucose UDPGmutase, pyrophosphorylase, and glucosyltransferase in the cells of A. pullulans Y68 were investigated (18). It was found that more pullulan is produced when the yeast strain is grown in the medium containing glucose

than when it is cultivated in the medium supplementing other sugars. However, when more pullulan is synthesized, less UDPglucose is left in the cells of A. pullulans Y68 (11). High pullulan yield is positively related to high activities of α-UDPGphosphoglucose mutase. pyrophosphorylase, and glucosyltransferase in A. pullulans Y68 grown on different sugars. A pathway of pullulan biosynthesis in A. pullulans Y68 was proposed based on different studies (18; 11). It is thought that the lower amount of pullulan produced by A. pullulans Y68 from fructose and xylose may be caused by the longer biosynthetic pathway leading from fructose and xylose to UDP-glucose. It is thought that most of UDP-glucose is used to synthesize pullulan when the glucosyltransferase activity is very high, leading to very low UDP-glucose level in the yeast cells. This may imply that very high glucosyltransferase activity is the unique characteristic of A. pullulans Y68 which can produce high yield of pullulan. Because the phosphoglucomutase and UDPG-pyrophosphotylase activity in the yeast cells grown in the medium containing glucose is also very high, UDP-glucose is synthesized continuously to supply the precursors for high pullulan synthesis when the very high glucosyltransferase activity occurs in the cells of A. pullulans Y68. However, high level of UDP-glucose is left when the yeast cells are grown in the medium containing xylose and fructose, respectively, due to low glucosyltransferase activity. Therefore, it is believed that the proposed pathway of pullulan biosynthesis be helpful for the metabolism will engineering of the yeast strain to further enhance pullulan yield.

Substrates and efficiency of pullulan fermentation

The major attention in the fermentation

studies of A. pullulans was devoted to developing optimal cultivation conditions while maintaining a high productivity of the cells. The main objectives were high yield, short fermentation time, low cost, and high purity of the final product to meet the stringent requirements for food, cosmetics pharmaceutical applications and (70). Although the literature on pullulan biosynthesis is contradictory because of differences among the numerous strains of A. pullulans, it was clearly demonstrated that the yield of pullulan strongly depends on the rate of substrate conversion (32). the concentration of Moreover, the polysaccharide produced by A. pullulans is dependent on the carbon source. It is important to note that the exopolymer synthesis was observed on glucose, sucrose, fructose and maltose. On a medium containing maltose as a carbon source, the wild fungus intensively grew, but had low pullulan producing activity. The problem of low pullulan producing activity was solved later by the development of several mutant strains of A. pullulans with improved ability to synthesize pullulan (54; 86). By using these cultures, it became possible to perform large-scale fermentation processes under well-controlled conditions. Progress was particularly stimulated by the development of new fermentation reactors designed to maintain high productivity of the culture. In addition, visual inspection methods (26) and several analytical techniques, including electrophoresis capillary and high performance liquid chromatography (4; 87), were applied successfully to monitor changes in the cell morphology and carbohydrate composition of the cultivation broth. In order to reduce the cost of the fermentation product, pullulan biosynthesis from the hydrolyzates of potato starch waste was studied (4). Fermentation of A. pullulans on a medium containing 20% maltose-rich hydrolyzates yields 115%

higher concentration of pullulan than that obtained on glucose syrup, indicating that maltose is a better substrate than glucose for pullulan production by the studied strain of A. pullulans. Other wastes from the agricultural and food industries such as deproteinized whey (62), beet molasses (37), sugar cane juice, and even peat hydrolyzate (41) are also considered as economical and efficient substrates for the pullulan production. An exhaustive literature survey devoted to the use of different industrial wastes for pullulan production and the problems associated with the recovery and characterization of the final product has been presented (37).

Fermentation techniques

The influence of aeration on vital activity of cells producing pullulan was studied in detail (17). Under anaerobic conditions, the cell population neither grows nor produces pullulan. An intense aeration during fermentation leads to a significant increase of pullulan concentration. This effect is especially pronounced on a nitrogen-rich media. An inverse effect of aeration was detected upon fermentation on the media deficient in nitrogen source, where intense aeration suppressed pullulan production. An increase in oxygen transfer rate achievable by increasing a gas partial pressure may improve the polysaccharide producing activity of A. pullulans. High airflow rates and high working pressure is beneficial for the growth of cell mass and pullulan synthesis. In order prevent cell to disintegration, cell immobilization procedures were applied to pullulan production (80). The elaboration of pullulan using cells of A. pullulans entrapped in agarose and carrageenan was studied (85). Both immobilized systems were found acceptable technically for pullulan production; however, the highest content of pullulan was obtained with the use of agarose-entrapped culture. Other researchers noticed that this method is inconvenient for pullulan production because of the several undesirable events, including the restriction of polysaccharide diffusion through microporous sorbents and the destruction of the immobilization system due to a rapid increase of the entrapped biomass (80).

Another approach to stabilize growth conditions and thereby increase pullulan vield is the use of continuous fed-batch cultivation. An optimization of fed-batch performed cultivation was by the investigation on the effect of feed mode and composition of the feed solution on the efficiency of pullulan fermentation. The fedbatch culture gives high pullulan yields; however, the higher rates of pullulan and substrate uptake production are characteristics of the traditional batch cultivation. Recently, a novel fermentor system for continuous production of pullulan. This novel design could serve as an excellent fermentor system in industries for large scale continuous production of pullulan (74).

Production of pullulan from agroindustrial wastes

Pullulan can be synthesized from a variety of carbohydrate substrates incorporated into either defined (synthetic) or non-defined media. Within the latter are several agroindustrial wastes which have been shown to suitable for pullulan production. be Utilization of these substrates would seem to be ecologically sound and economically advantageous as they have low or even negative costs. In this way the potential of pullulan production from agro-industrial wastes is expected to lower the cost of production and seems to be a very promising ecologically and economically sound way of bioconversion. However, the pullulan which is produced from different substrate may vary in purity and other physical and chemical characteristics. This is more pronounced when agro-industrial wastes are used as a carbon source for the fermentation. Some of these characteristics like the molecular weight are very important when commercialization of the production of pullulan from these wastes is under consideration (31).

The cost of pullulan primarily depends on the raw materials, especially of carbon source, which play a major role in the economics of pullulan production. The sugar such as sucrose, glucose, fructose, maltose, starch, or malto oligosaccharides support pullulan production by A. pullulans. There are various reports on the production of pullulan from different sources such as sweet potato (88), soyabean pomace (68), potato starch waste (4), deproteinized whey (62), agro-industrial waste such as grape skin pulp extract, starch waste, olive oil waste effluents and beet molasses (31), brewery waste (64), jagerry which is concentrated sugar cane juice (82), carob pods (63) and Jerusalem artichoke (22; 52). The production pullulan was investigated using various coconut by-products and it has advantages such as reduction of production cost and recycling of natural sources, in initial effect addition the of pH. fermentation time and nitrogen sources were investigated in batch fermentation. This is the first report using coconut by-products for the production of pullulan (79).

Conclusion

Aureobasidium pullulans is an industrially important fungus which produces a number of by-products including several enzymes, single cell protein and an industrially important polysaccharide namely pullulan besides playing an important role in biodeterioration and in controlling environmental pollution. More than 300 patents describing the production and use of pullulan and pullulan derivatives are known. Although a detail study has been done regarding the morphology, distribution and economic importance of this fungus still, we think that, a lot of investigations are needed for better exploitation of this economically important fungus.

Acknowledgement

The corresponding author (Ranjan Singh) is thankful to the Head, Department of Botany and Microbiology, St. Aloysius College (Autonomous), Jabalpur, M.P., India for the necessary laboratory facility provided to carry out the research. Thanks is also extended to Principal, St. Aloysius College (Autonomous), Jabalpur, M.P., India, for providing the necessary chemicals and glass wares required to carry out the research work.

Reference

- Andrews, J.H., Spear, R.N., Nordheim, E.V. Population biology of *Aureobasidium pullulans* on apple leaf surface. Canadian J. of Microbiol. 2002; 48(6): 500-13.
- Alban, S., Schauerte, A., Franz, G. Anticoagulant sulfated polysaccharides: part I. Synthesis and structure-activity relationship of new pullulan sulfates. Carbohydr. Polym. 2002; 47: 267-276.
- Babjeva, I., Reshetova, I. Yeast resources in natural habitats at polar circle latitude. Food Technol. Biotechnol. 1998; 36: 8-13.
- Barnett, C., Smith, A., Scanlon, B., Israilides, C.J. Pullulan production by *Aureobasidium pullulans* growing on

hydrolysed potato starch waste. Carbohydr. Polym. 1999; 38: 203-209.

- Bencheqroun, S.K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S.E., Jijakli, M.H. *In vitro* and *in situ* study of postharvest apple blue mold biocontrol by *Aureobasidium pullulans*: evidence for the involvement of competition for nutrients. Postharvest Biol. Technol. 2007; 46: 128-135.
- Buzzini, P., Martini, A. Extracellular enzymatic activity profiles in yeast and yeast like strains isolated from tropical environments. J. Appl. Microbiol. 2002; 93: 1020-1025.
- Campbell, B.S., Siddique, A.B.M., McDougall, B.M., Seviour, R.J. Which morphological forms of the fungus *Aureobasidium pullulans* are responsible for pullulan production? FEMS Microbiol. Lett. 2004; 232: 225-228.
- Catley, B.J., Ramsay, A., Servis, C. Observations on the structure of the fungal extracellular polysaccharide, pullulan. Carbohydr. Res. 1986; 153: 79-86.
- Chi, Z. M., Liu, Z. M., Gao, L. M., Gong, F., Ma, C. L., Wang, X. H., Li, H. F. Marine yeasts and their applications in mariculture. J. Ocean Univ. Chin. 2006; 5: 251-256.
- Chi, Z., Ma, C., Wang, P., Li, H. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast *Aureobasidium pullulans*. Bioresour. Technol. 2007; 98: 534-538.
- Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G., Zhang, T. Bioproducts from *Aureobasidium pullulans*, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 2009; 82: 793-804.

- Chi, Z.M., Yan, K.R., Gao, L.M., Li, J., Wang, X. H., Wang, L. Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. J. Mar. Biol. Assoc. UK, 2008; 88: 1-6.
- Dake, M.S., Beniwal, N. Antibacterial Activity Of *Aureobasidium Pullulans*. Int J Pharm Bio Sci. 2014; 5(3): 1026 – 1048.
- De Hoog, G.A., McGinnis, M.R. Ascomycetous black yeasts. In: de Hoog GS, Smith MT and Weijman ACM (ed.) The Expanding Realm of Yeast Fungi. Elsevier, Amsterdam, Netherlands, 1987; pp. 187-199.
- De Hoog, G.S., Yurlova, N.A. Conidiogenesis, nutritional physiology and taxonomy of *Aureobasidium* and *Hormonema*. Antonie Van Leewenhoek. 1994; 65: 41-54.
- Degeest, B., Vuyst, L. D. Correlation of activities of the enzymes αphosphoglucomutase, **UDP**-galactose 4-epimerase and UDPpyrophosphorylase with exopolysaccharide biosynthesis bv Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 2000; 66: 3519-3527.
- Deshpande, M.S., Rale, V.B., Lynch, J.M. Aureobasidium *pullulans* in applied microbiology: A status report. Enzyme Microb. Technol. 1992; 14: 514-527.
- Duan, X.H., Chi, Z.M., Wang, L., Wang,
 X.H. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in *Aureobasidium pullulans* Y68. Carbohydr. Polym. 2008; 73: 587-593.
- Gao, L.M., Chi, Z.M., Sheng, J., Ni, X.M., Wang, L. Single-cell protein production from Jerusaleum artichoke

extract by a recently isolated marine yeast *Cryptococcus aureus* G7a and its nutritive analysis. Appl. Microbiol. Biotechnol. 2007; 77: 825-832.

- Gaur, R., Singh, R., Tiwari, S., Yadav, S.K., Daramwal, N.S. Optimization of physico-chemical and nutritional parameters for a novel pullulan producing fungus, *Eurotium chevalieri*. J. Appl. Microbiol. 2010a. doi.org/10.1111/j.1365-2672.2010.04731.x
- Gaur, R., Singh, R., Gupta, M. and Gaur, M.K. *Aureobasidium pullulans*, an economically important polymorphic yeast with special reference to pullulan. African J. Biotechnol. 2010 b; 9(47): 7989-7997.
- Goksungur, Y., Uzunogullari, P., Dagbagli, S. Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydr. Polym. 2011; 83:1330– 1337.
- Gostincar, C., Ohm, R.A., Kogej, T., Sonjak, S., Turk, M., Zajc, J., Zalar, P., Gunde-Cimerman, N. *Aureobasidium pullulans* varieties: biotechnological potential, stress tolerance and description of new species. BMC Genomics. 2014; 15: 549.
- Gunde-Cimerman, N., Zalar, P., de Hoog, G.S., Plemenitas, A. Hypersaline water in salterns-natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 2000; 32: 235-240.
- Gupta, R., Gigras, P., Mohapatra, H.,
 Goswami, V.K., Chauhan, B.
 Microbial α-amylase: a biotechnological perspective. Proc.
 Biochem. 2003; 38: 1599-1616.
- Guterman, H., Shabtai, Y. A self-tuning vision system for monitoring biotechnology process. I. Application to production of pullulans by

Aureobasidium pullulans. Biotechnol. Bioeng. 1996; 51: 501- 510.

- Haas, H. Molecular genetics of fungal siderophores biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 2003; 62: 316-330.
- Haifeng, L., Zhenming, C., Xiaohong, W., Chunling, M. Amylase production by the marine yeast *Aureobasidium pullulans* N13D. J. Ocean Univ. China. 2007; 6: 60-65.
- Hasan, F., Shah, A.A., Hameed, A. Industrial applications of microbial lipases. Enzyme Microb. Technol. 2006; 39: 235-251.
- Imshenetskii, A.A., Kondrateva, T.F., Kudryashev, L.I., Yarovaya, S.M., Smutko, A.N., Alekseeva, G.S. A comparative study of pullulans synthesized by strains of *Pullularia* (*Aureobasidium*) *pullulans* of differing levels of ploidy. Mikrobiol. 1983; 52: 816-820.
- Israilides, C., Scanlon, B., Smith, A., Jumel, K. Harding, S.E. Characterization of pullulans produced from agroindustrial wastes. Carbohydrate Polymers 1994; 25: 203-309.
- Kondratyeva, T.F. Production of the polysaccharide pullulan by *Aureobasidium (Pullularia) pullulans*. Usp. Mikrobiol. 1981; 16: 175-193.
- Kremnicky, L., Biely, P. B-Mannanolytic system of *Aureobasidium pullulans*. Arch. Microbiol. 1997; 167: 350-355.
- Kudanga, T., Mwenje, E. Extracellular cellulase production by tropical isolates of *Aureobasidium pullulans*. Can. J. Microbiol. 2005; 51: 773-776.
- Kurmar, C.G., Tagaki, H. Microbial alkaline protease: from bioindustrial viewpoint. Biotechnol. Adv. 1999; 17: 561-594.
- Kuter, G.A. Microfungal populations associated with the decomposition of

sugar maple leaf litter. Mycologia. 1986; 78: 114-126.

- Lazaridou, A., Roukas, T., Biliaderies, C.G., Vaikousi, H. Characterization of pullulan produced from beet molasses by *Aureobasidium pullulans* in a stirred tank reactor under varying agitation. Enzyme Microbiol. Technol. 2002; 31: 122-132.
- Leathers, T.D. Colour variants of *Aureobasidium pullulans* overproduce xylanase with extremely high specific activity. Appl. Environ. Microbiol. 1986; 52: 1026-1030.
- Leathers, T.D. Substrate regulation and specification of amylases from *Aureobasidium* strain RRLY-12974. FEMS Microbiol. Lett. 1993; 110: 217-222.
- Leathers, T.D. Pullulan. In: Vandamme EJ, De Baets S and Steinbuchel A (eds). Biopolymers. Polysaccharides II: Polysaccharides from eukaryotes, Wiley-VCH, Weinheim. 2002; 6:1-35.
- LeDuy, A., Boa, J.M. Pullulan production from peat hydrolyzate. Can. J. Microbiol. 1983; 29: 143-146.
- Lee, J.H., Kim, J.H., Zhu, I.H., Zhan, X.B., Lee, J.W., Shin, D.H., Kim, S.K. Optimization of conditions for the production of pullulan and high molecular weight pullulan by *Aureobasidium pulluans*. Biotechnol. Lett. 2001; 23: 817-820.
- Li, C.H., Song, L.S., Zhao, J.M., Zhu, L., Zou, H.B., Zhang, H., Wang, Z.H., Cai, Z.H. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop *Chlamys farreri*. Fish Shellfish Immunol. 2007d; 22: 663-672.
- Li, J.F., Chi, Z.M., Li, H.F., Wang, X.H. Characterization of a mutant of *Alteromonas aurantia* A 18 and its application in mariculture. J. Ocean Univ. Chin. 2008; 7: 55-59.

- Li, H.F., Chi, Z.M., Wang, X.H., Ma, C.L. Amylase production by the marine yeast *Aureobasidium pullulans* N13d. J. Ocean Univ. Chin. 2007a; 6: 61-66.
- Lin, T.C., Cheng, C. Enhanced mannanase production by submerged culture of *Aspergillus niger* NCH-189 using defatted copra based media. Proc. Biochem. 2004; 39: 1103-1109.
- Lis, S.R.N., Andrews, J.H. Quantitative fluorescence *in situ* hybridization of *Aureobasidium pullulans* on microscope slides and leaf surface. Appl. Environ. Microbiol. 1997; 63: 3261-3167.
- Liu, Z.Q., Li, X.Y., Chi, Z.M., Wang, L., Li, J., Wang, X.H. Cloning, characterization and expression of the extracellular lipase gene from *Aureobasidium pullulans* HN2-3 isolated from sea saltern. Antonie van Leeuwenhoek. 2008a; 94: 245-255.
- Lugauskas, A., Griguceviciene, A., Asadauskas, S., Selskiene, A. Selection of micromycetes capable of developing on technical lubricants. Ekologika, 2008; 54: 186-194.
- Mounir, R., Durieux, A., Bodo, C., Allard, C., Simon, J.P., Achbani, E.H., El-Jaafari, S., Douira, A., Jijakli, M.H.
 Production, formulation and antagonistic activity of the biocontrol like-yeast *Aureobasidium pullulans* against *Penicillium expansum*.
 Biotechnol. Lett. 2007; 29: 553- 559.
- Nidhi, G., Gupta, J.K., Soni, S.K. A novel raw starch digesting thermostable α amylase from *Bacillus* sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol. 2005; 37: 723-734.
- Oguzhan, P., Yangilar, F. Pullulan: production and usage in food industry. African J. Food and Science Technol. 2013; 4(3): 57-63.

- Onderkova, Z., Bryjak, J., Polakovic, M. Properties of fructosyltransferase from *Aureobasidium pullulans* immobilized on an acrylic carrier. Chem Pap. 2007; 61: 359-363.
- Pollock, T.J., Thorne, L., Armentrout, R.W. Isolation of new *Aureobasidium* strains that produce high-molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 1992; 58: 877-883.
- Ponnusani, V., Gusasekar, V. Production of pullulan by microbial fermentation.Springer International Publishing Switzerland. 2014: 1-13.
- Prasongsuk, S., Berhow, M.A., Dunlap, C.A., Weislender, D., Leathers, T.D., Eveleigh, D.E., Punnapayak, H.
 Pullulan production by tropical isolates of *Aureobasidium pullulans*. J. Ind. Microbiol. Biotechnol. 2007; 34: 55-61.
- Prasongsuk, S., Sullivan, R.F., Kuhirun, M., Eveleigh, D.E., Punnapayak, H. Thailand habitats as source of pullulan producing strains of *Aureobasidium pullulans*. World J. Microbiol. Biotechnol. 2005; 21: 393-398.
- Punnapayak, H., Sudhadham, M., Prasongsuk, S., Pichayangkura, S. Characterization of *Aureobasidium pullulans* isolated from airborne spores in Thailand. J. Ind. Microbiol. Biotechnol. 2003; 30: 89-94.
- Ramos, S., García-Acha, I. A vegetative cycle of *Pullularia pullulans*. Trans. Br. Mycol. Soc. 1975; 64: 129-135.
- Ravindra, A.P. Value-added food: single cell protein. Biotechnol. Adv. 2000; 18: 459-479.
- Riquelme, M. Fungal siderophores in plantmicrobe interactions. Microbiol. SEM. 1996; 12: 537-546.
- Roukas, T. Pullulan production from deproteinized whey by *Aureobasidium*

pullulans. J. Ind. Microbiol. Biotechnol. 1999; 22: 617-621.

- Roukas, T., Biliaderis, C.G. Evaluation of carob pod as a substrate for pullulan production by *Aureobasidium pullulans*. Appl. Biochem. Biotechnol. 1995; 55: 27-44.
- Roukas, T.C. Pullulan production from brewery wastes by *Aureobasidium pullulans*. World J. Microbiol. Biotechnol. 1999; 15: 447-450.
- Samson, R.A., Hoekstra, E.S., Frisvad, J.C. Introduction to Food- and Air borne Fungi. 7th Ed. Centraalbureau voor Schimmelcultures, Utrecht. 2004: 150-177.
- Schena, L., Ippolito, A., Zahavi, T., Cohen, L., Nigro, F., Droby, S. Genetic diversity and biocontrol activity of *Aureobasidium pullulans* isolates against postharvest rots. Postharvest Biol. Technol. 1999; 17: 187-199.
- Schena, L., Sialer, M.F., Gallantly, D. Molecular detection of strain L47 of *Aureobasidium pullulans*, a biocontrol agent of postharvest diseases. Plant Dis. 2002; 86: 54-60.
- Seo, H.P., Son, C.W., Chung, C.H., Jung, D., Kim, S.K., Gross, R.A. Production of high molecular weight pullulan by *Aureobasidium pullulans* HP 2001 with soybean pomace as a nitrogen source. Bioresource Technol. 2004; 95: 293-299.
- Shibata, M., Asahina, M., Teramoto, R., Yosomiya, R. Chemical modifications of pullulan by isocyanaye compounds. Polymer. 2001; 42: 59- 64.
- Shingel, K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr. Res. 2004; 339: 447-460.
- Simon, I., Caye-Vaugien, C., Bouchonneau, M. Relation between pullulan production, morphological state and

growth conditions in *Aureobasidium pullulans*: new observations. J. Gen. Microbiol. 1993; 139: 979-985.

- Singh, R.S., Saini, G.K. Pullulanhyperproducing color variant strain of *Aureobasidium pullulans* FB-1 newly isolated from phylloplane of *Ficus* sp. Biores. Technol. 2007. doi.org/ 10.1016/j. biortech. 2007. 08.003.
- Singh, R.S., Saini, G.K., Kennedy, J.F. Pullulan: microbial sources, production and applications. Carbohydr. Polym. 2008; 73: 515-531.
- Singh, R., Gaur, R., Jamal, F., Gaur, M.K. A novel fermentor system optimized for continuous production of pullulan. African J. Biotechnol. 2011; 10 (48): 9839-9846.
- Singh, R., Gaur, R., Tiwari S., Gaur, M.K. Production of pullulan by a thermotolerant *Aureobasidum pullulans* strain in non-stirred fed batch fermentation process. Brazilain J. Microbiol. 2012; 43: 1042-1050.
- Singh, R., Gaur, R., Gaur, M.K., Pandey, P.K., Jamal F. Antimicrobial activity of a thermotolerant *Aureobasidium pullulans*. Internation. J. Curren. Microbiol. App .Sci. 2015; 4(3): 740-744.
- Slavikova, E., Vadkertiova, R. Seasonal occurrence of yeasts and yeasts-like organisms in the river Danube. Antonie van Leeuwenhoek. 1997; 72: 77-80.
- Sutherland, L.W. Novel and established application of microbial polysaccharide. Trends. Biotechnol. 1998; 16: 41-46.
- Thirumavalavan, K., Manikkadan, T.R., Dhanesekar, R. Pullulan production from coconut by-products by *Aureobasidium pullulans*. African J. Biotechnol. 2009; 8(2): 254-258.
- Urkut, Z., Dagbagli, S., Goksungur, Y. Optimization of pullulan production

using Ca-alginate-immobilized Aureobasidium pullulans by response surface methodology. J. Chem. Technol. Biotechnol. 2007; 82: 837-846.

- Urzi, C., De Leo, F., Lo Passo. C., Criseo, G. Intra-specific diversity of *Aureobasidium pullulans* strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J. Microbiol. Methods. 1999; 36: 95-105.
- Vijayendra, S.V.N., Bansal, D., Prasad,
 M.S., Nand, K. Jaggery: A novel substrate for pullulan production by *Aureobasidium pullulans* CFR-77.
 Proc. Biochem. 2001; 37: 359-364
- Wang, L., Chi, Z.M., Wang, X.H., Liu, Z.Q., Li, J. Diversity of lipase producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol. 2007; 57: 495-501.
- Wang, W.L., Chi, Z.M., Chi, Z., Li, J., Wang, X.H. Siderophore production by the marine-derived *Aureobasidium pullulans* and its antimicrobial activity. Bioresour. Technol. 2008. dx.doi.org/10.1016/j.biortech.2008.12. 010.
- West, T.P. Exopolysaccharide production by entrapped cells of the fungus *Aureobasidium pullulans* ATCC 201253. J. Basic Microbiol. 2000; 40: 5-6.
- West, T.P., Strohfus, B. Polysaccharide production by a reduced pigmentation mutant of *Aureobasidium pullulans* NYS-1. Lett. Appl. Microbiol. 2001; 33: 169-17.
- Wiley, B.J., Ball, D.H., Arcidiacono, S.M., Sousa, S., Myer, J.M., Kaplan, D.L. Control of molecular weight distribution of the biopolymer pullulan produced by *Aureobasidium pullulans*.

J. Environ. Polymer. Degradr. 1993; 1: 3-9.

- Wu, S., Jin, Z., Tong, Q., Chen, H. Sweet potato: A novel substrate for pullulan production by *Aureobasidium pullulans*. Carbohydr polymer. 2009; 76: 645-649.
- Yoshikawa, J., Amachi, S., Shinoyama, H., Fujii, T. Purification and some properties of β-fructofuranosidase I formed by *Aureobasidium pullulans* DSM 2404. J. Biosci. Bioeng. 2007; 103: 491-493.
- Yurlova, N.A., de Hoog, G.S., Gerrites vanden Ende, A.H.G. Taxonomy of *Aureobasidium* and allied genera. Stud. Mycol. 1999; 43: 63- 69.
- Zalar, P., Gostincar, C., De Hoog, G.S., Ursic, V., Sudhadham, M., Gunde-Cimerman, N. Redefinition of *Aureobasidium pullulans* and its varieties. Stud. Mycol. 2008; 61: 21-38.
- Zamora, P., Martinez-Ruiz, C., Diez, J.J. Fungi in needles and twigs of pine plantations from Northern Spain. Fungal Divers. 2008; 30: 171-184.
- Zhang, L., Chi, Z.M. Screening and identification of a cellulose producing marine yeast and medium and fermentation condition optimization for cellular production. J. Ocean Univ. Chin. Sup. II. 2007; 37: 101-108.